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Abstract [GB]
[GK]

Time simulation of flutter, involving large local struc- [GM]

tural changes, is formulated with a state-space model [i]
that is based on a relatively small number of generalized k

coordinates. Free-free vibration modes are first calcu- [K]
lated for a nominal finite-element model with relatively m

large fictitious masses located at the area of structural [M]

changes. A low-frequency subset of these modes is then [MI]
transformed into a set of structural modal coordinates

with which the entire simulation is performed. These n

generalized coordinates and the associated oscillatory

aerodynamic force coefficient matrices are used to con- n/
struct an efficient time-domain, state-space model for a
basic aeroelastic case. The time simulation can then be

performed by simply changing the mass, stiffness and q

damping coupling terms when structural changes occur. [Q(ik)]
It is shown that the size of the aeroelastic model re-

quired for time simulation with large structural changes [(_b(g)]
at a few apriori known locations is similar to that re-

quired for direct analysis of a single structural case.
The method is applied to the simulation of an aeroelas-

tic wind-tunnel model. The diverging oscillations are

followed by the activation of a tip-ballast decoupling

mechanism that stabilizes the system but may cause
significant transient overshoots.

Nomenclature

[A] system matrix

[A1], [A2] matrix coefficients of aerodynamic approx-
imation

b

[B]
[c]
[D], [El

reference semichord

damping matrix of nominal structure

output matrix

matrix coefficients of aerodynamic approx-
imation
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{xa}

{v}

[aK]
[AMI
A

[¢]
{¢}
[¢1

[¢1

¢,J

generalized structural damping matrix

generalized structural stiffness matrix
generalized structural mass matrix

identity matrix

reduced frequency, wb/V
stiffness matrix of nominal structure

number of aerodynamic roots
mass matrix of nominal structure

matrix of fictitious masses added to nomi-

nal structure

number of degrees of freedom in finite-
element model

number of modes with fictitious masses

taken into account for aeroelastic model-

ing

dynamic pressure
generalized aerodynamic force coefficient
matrix

approximated generalized aerodynamic
force matrix

diagonal aerodynamic lag matrix
Laplace variable

nondimensionalized Laplace variable, sb/V
time

true air speed

discrete structural displacement vector
aerodynamic state vector

vector of outputs

change in damping matrix
change in stiffness matrix

change in mass matrix

eigenvalues of [A]
diagonal modal damping coefficient matrix

generalized displacements
matrix of vibration modes in discrete coor-

dinates

eigenvectors of [A]

undamped eigenvectors in modal coordi-
nates

vibration frequency
diagonal matrix of natural frequencies

natural vibration modal frequency



Subscripts

a

cc_

b

d

disp

f
F

r

T

vel

actual case of stiffness variation
accelerations

basic structural modes

direct model

displacements
fictitious masses
flutter

response locations
transition in stiffness
velocities

Abbreviations

AFW

FM
GAF

MS

Active Flexible Wing
ficticious mass

generalized aerodynamic force
Minimum State

Introduction

The common approach for formulating the equations
of motion of aeroelastic systems starts with a normal

modes analysis of the structural model I. Unsteady
aerodynamic force coefficient matrices are then calcu-

lated at various reduced frequency values to account for
the aerodynamic coupling between these modes while

undergoing oscillatory motion. Classical frequency-

domain aeroelastic analysis methods 2 use the modal

structural properties and the tabulated aerodynamic
matrices to calculate the flutter conditions at which the

aeroelastic system matrix is neutrally stable. The basic

assumption of the modal approach is that the structural

deflections of the aeroelastic system are linear combina-

tions of a limited set of low frequency vibration modes.

Time-domain aeroelastic modeling techniques, which

transform the equations of motion into a state-space,
time-invariant form, call for the approximation of the

aerodynamic matrices by rational functions in the

Laplace domain. The order of the resulting state-space
model is a function of the number of selected modes,

the number of aerodynamic approximation roots, and
the approximation formula. The main considerations in

constructing the model are its size (which affects the ef-
ficiency of the subsequent analyses), its accuracy, and

the model construction efforts. Tiffany and Adams 3

summarized and extended the most commonly used

aerodynamic approximation methods. Among those,
the minimum-state method of Karpei 4-6 yields the

smallest state-space aeroelastic models per desired ac-

curacy. Being based on an iterative nonlinear least-

square solution, the minimum-state method requires
larger model-construction computer time, but the ex-

tra time is minor relative to the time savings in typical
subsequent analyses.

Various computational schemes such as structural

optimization, parametric studies, the investigation of
damage effects, and structural changes during dynamic
response, require repeated construction of the model for

numerous structural variations. Repeated calculation
of the normal modes and the associated aerodynamic

matrices every time the structure changes is often im-

practical in these cases. A more practical approach is

to introduce structural changes without changing the
modal coordinates. The validity of this approach de-
pends on the structural information contained in the

modal coordinates and the magnitude of the structural

changes. The number of required modes increases with

the magnitude of the allowable structural move limits.

Keeping the modal coordinates unchanged is even
more important in time simulation of aeroelastic re-

sponse during which structural changes occur. The

occurrences of structural changes define the time seg-
ments between the model changes. The end conditions

of one segment are the initial conditions of the following

one. One can argue that these transition-point condi-
tions can be transformed to a set of new coordinates.

But this transformation is adequate only if the new co-

ordinates can be expressed as a linear combination of
the old ones. However, if this is the case, there is also

no need to change the modal coordinates in the first
place. An aeroelastic optimization procedure 7 where a
realistic wing structure was optimized with aeroservoe-

lastic stability constraints, demonstrated that moder-

ate structural changes can be accommodated without

changing the basic 25 modal coordinates. In order to

accommodate large structural changes, the modes that
serve as generalized coordinates must contain signifi-

cant distortions in the vicinity of the changes. Tak-

ing into account more modes supports this purpose but
may result in an excessively large aeroelastic model.

A method for accommodating large structural
changes at a small number of structural locations, with-

out significantly increasing the model size has been pre-

sented in reference 8. The procedure starts with cal-

culating a set of low frequency vibration modes with

the structure loaded with large fictitious masses at the
locations of anticipated structural changes. The ficti-
tious masses cause the vibration modes to contain the

local deformations required for an adequate accommo-

dation of large structural changes. The fictitious-mass

idea has also been applied in the context of substruc-
ture modal coupling 9,1° and eigenvalue sensitivities of

control augmented structures 11 .

The purpose of this work is to outline the process of

applying the fictitious-mass approach to generate effi-
cient fixed-coordinate time-domain aeroelastic models

for dynamic response with structural changes, and to
demonstrate the use of these models for time simula-

tion of flutter during which large local stiffness changes
occur.



Analytical Development

Direct Time-Domain Analysis

Time-domain, first-order, state-space formulation of

aeroelastic systems starts (as in the classic second-

order, frequency-domain case) with zero-damping nor-
mal modes analysis of a finite-element model of the

flight vehicle. A set of low-frequency vibration modes,

[¢], is then used to calculate the generalized un-
steady aerodynamic force (GAF) coefficient matrices,

[Q(ik)], for various reduced frequency values. Time-
domain modeling requires these GAF matrices to be

approximated by rational interpolation functions in the

Laplace (s) domain. The aerodynamic approximations

in this work are performed by the Minimum-State (MS)
method 4,5. The approximation function, constrained to

exactly match steady aerodynamics, is

[(_(._)] = [Q(0)] + [A1]._ + [A_]$ _ +

[D] ($[I] - [R]) -1 [E]$ (1)

where _ = sb/V. The user defines the m × m diag-
onal aerodynamic lag matrix [R] and two additional

approximation constraints (for each term) which define

the [A1] and [A2] matrices as functions of the other
coefficients and the tabulated data. The [D] and [El

real coefficient matrices are calculated by an iterative

nonlinear least-square procedure that fits the tabulated
data matrices. The data terms can be weighted in the

least-square process according to their relative impor-

tance. The physical weighting algorithm s,6 used in this

work weights the tabulated data according to open-

loop aeroelastic response characteristics at a selected
dynamic pressure. It has been shown in various appli-

cations that the resulting model is applicable to open-

and closed-loop analyses with large dynamic pressure
variationsS,6,12,13.

A full description of the state-space aeroservoelastic

model resulting from the MS approximation is given in
reference 14. The state-space equation of motion of the

aeroelastic system without external excitation is

{k} = [A]{z} (2)

where

[A] 0 [i] 0= _[fi7/]-1[/_] -[_/]-1[/}] -q[AT/]-I[D]
0 [E] -_[R]

qb_ "A[M] = [aMl+-p-_[ 21

[A'] = [GK] + q[Q(0)]
qb

[_] = [GB]+ vIA,]

where the [GM] is the diagonal generalized mass ma-
trix found in the normal modes analysis, and [GK]

is the diagonal stiffness matrix whose elements are

GKi = GMsw_. When the structural damping char-
acteristics are calculated from structural element prop-

erties (which is rarely the case), the normal modes are
still calculated with zero damping, and the resulting

generalized damping matrix is

[GB] = [¢]T[B][¢] (3)

which is a full matrix. In most cases, however, the gen-

eralized damping matrix is assumed to be the diagonal

matrix

[GB] = 2[_][GM][¢,.,,.,] (4)

where the diagonal matrix [_] is either chosen using

engineering judgment (typical values are 0.005 to 0.02)
or measured in a ground vibration test. The dynamic

response at specified response locations is related to the

response of the states of Eq. (2) by

{_(t)} = [c]{.(0} (5)

where [C] is based on the modal deflections at the re-

sponse locations, [0_]- Structural displacements are cal-
culated with

[c,,,_] = [ _. o o ] (o)

structural velocities are calculated with

[c.,]=[o _. o] (7)

and structural accelerations are calculated with

[Ca¢ct] =-[¢rl[-'Q]-' [ /_ /_' qD] (8)

The state response to initial conditions can be ex-

pressed analytically as

{.(0} = [¢][e_'][¢]-'{=(0)} (9)

where [ext] is a diagonal matrix where the A values are
the eigenvalues of [A], and [tp] is the matrix of asso-

ciated eigenvectors. Most of the eigenvalues and their
associated eigenvectors are complex. Since the complex

ones appear in conjugate pairs, the resulting {x(t)} is

always real, and is actually calculated by real-number

algebra.

Structural Changes by Direct Modal Coupling

Structural changes that occur during the dynamic re-

sponse, due to nonlinearities or application of mechan-
ical devices, modify all or some of the finite-element

[M], [K] and [B] matrices by the increments [AM],

[AK] and [AB] respectively. With the assumption that



the structural displacements after the changes can still
be expressed as linear combinations of the original vi-

bration modes, the analysis can continue with [GM],
[GK] and [GB] of Eq. (2) replaced by

and

[GAla! : [GM] q- [¢]T[AM][(_]

[GKa] = [GK] + [¢]T[AK][¢]

(I0)

(11)

[GBa] = [GB] + [¢]T[AB][¢] (12)

The physically-weighted aerodynamic approximation
performed for the original model is assumed to remain
valid for the modified model. This has been demon-

strated in stability analysis with moderate _ and large s

structural changes.

When the structural changes occur at time t = ta,

the state response of Eq. (9) is continued with

{x(t)} = [¢al[eA'(t-t')l[Cal-l{x(ta) } (13)

where Aa and [¢a] are the eigenvalues and eigenvectors

of the modified system matrix [A]. It should be noted

that the modal coordinates do not change when the [A]
matrix varies. Consequently, the response coefficient

matrix [C] of Eq. (5) remains unchanged, except for

that of the acceleration response, Eq. (8), which is
now based on Eqs. (10)-(12).

The flutter characteristics of the system before and

after the structural changes are calculated by root-locus
analyses of the respective [A] matrices with variable
dynamic pressure.

The Fictitious-Mass Model

The application of the direct modal coupling ap-
proach with large structural changes would require the

inclusion of a large number of vibration modes. A way

to analyze the system stability for large local struc-
tural variations with a minimal increase of the model

size and without changing the modal coordinates was
presented in reference 8. The method is extended here

to deal with time responses. The finite-element vibra-
tion modes and the associated GAF's are calculated

as above for a nominal case, but with the locations of

anticipated structural changes loaded with large ficti-

tious masses. A set of n/ low-frequency fictitious vi-

bration modes, [_b!], is selected for further analysis. A
coordinate transformation is then performed to "clean
out" the fictitious masses and to form an actual "basic"

case whose mass and stiffness matrices may differ from

those of the nominal case by [AMb] and [AKb]. The

transformation is based on the natural frequencies [wb]

and eigenvectors [Xb] (normalized to unit generalized

masses) associated with the equation of free undamped
vibrations in modal coordinates

([GM!] + [¢!]T[AMe -- Mj][_b/]) {_'/} +

([GK!] + [¢!]T[Agb][_b!]) {_!} = {0} (14)

The mode shapes and GAF's calculated for the

fictitious-mass (FM) finite-element model are trans-

formed to the basic case by

[(_b] --" [¢!][Xb] (15)

and

[Qb(ik)] = _b]T[Ql(ik)][Xb] (16)

The basic-casemode shapes [¢b]serve as a constant

setofstructuralgeneralizedcoordinatesthroughoutthe

response analysis(as was [¢]in the directmodal ap-

proach). When the columns of [¢b]and the associated

frequencies[wb]are compared to those calculateddi-

rectlyforthe basic-casefinite-elementmodel, they ap-

pear in two groups. The low-frequency group of nd

modes ispracticallyidenticalto the directlycalculated

modes. The n/--nd modes inthehigh-frequencygroup,

whose number and nature depend on the number and

magnitudes of the fictitiousmasses, do not represent

actualnormal modes, but are syntheticmodes with rel-

ativelylargelocaldistortionsinthe vicinityofthe fic-

titiousmasses. In thisway, the modes containdetailed
localstructuralinformationwith a minimal increaseof

the number of modes.

The MS approximation of Eq. (I) is now calcu-

latedwith the transformed modal data,and the state-

space Eq. (2)and the accelerationresponse matrix (8)

are constructed for the basic case with [GM] = [1"],

[GK] = limb]2 and [GB] = 2[(b][Wb] (in the case of

diagonal generalized damping). When the structural
damping characteristics are calculated from structural

element properties, [GB!] is first calculated from the

FM finite-element model using Eq. (3) with [¢] = [¢1],
and then transformed to the basic case in the same way

the GAF matrices are transformed in Eq. (16).
Most of the response analysis from this point on is

performed in the way shown above for the direct modal

approach, Eqs. (9)-(13), with [¢] = [¢b]- An exception

is the generalized damping matrix, [GBa] of Eq. (12),

when large mass and/or stiffness changes appear in Eqs.
(10) and (11). With no damping changes, [GBa] would

remain diagonal but would cause, in effect, damping
coupling between the normal modes of the modified

system s . In order to yield an effectively diagonal struc-

tural damping matrix, [GB] is replaced by

[GBo] = 2[GM_][X_][(_][w,][X_]r[GMa] (17)

where [wa] and [Xa] are the complete set of frequencies
and eigenvectors associated with

[GMa] {_'b} q- [GKa]{_b} = {0} (18)

where [Xa] is normalized to yield

[xa]T[GMa][Xa] = [/] (19)

The accuracy of the FM aeroelastic model (which is

based on n/modes) can he evaluated by separate com-



parisonsof timeresponsesof severalstructuralvaria-
tionsto thoseobtaineddirectlywiththeirownnd nat-
ural modes. Since the FM models contain more struc-

tural information, the structural initial conditions have
to be defined first in terms of the coordinates of the di-

rect models. With {_a(O)} and {_a(O)} being the direct-

model displacement and velocity initial conditions of a

comparison case, the equivalent initial conditions in the
associated FM case are

and

(2O)

(21)

where the columns ofthe n/× nd transformationmatrix

[Xa]are the nd lowest-frequencyeigenvectorsassociated

with free FM modal equation of motion (18) for this

case.

Results

The numerical example consistsof a mathematical

model ofthe Active FlexibleWing (AFW) wind-tunnel

model Is,lstestedat the NASA Langley Research Cen-

ter.An externalballastisconnected to the tipof the

wing through a mechanism designed to decouple the

pitchmotion of the ballastfrom that of the wing when

flutteroccurs. Figure 1 shows a close-upview of the

ballastand itsattachment to the wing. Detailsof the

structuraland aerodynamic models are given in ref-

erence 8. A frequency-domain flutteranalysisby the

p- k method s showed that,with "stiffor "coupled"

pitch connection,the Mach 0.9 antisymmetric flutter

dynamic pressureisabout 1.9psi and the flutterfre-

quency isabout 12 Hz. When the decoupling mecha-

nism isactivated,the pitch connection stiffnessisre-

duced by 96.5% ("soft" or "decoupled") and the flut-

ter dynamic pressure changes to about 3.0 psi and the

flutter frequency to 31 Hz. The decoupling device thus
provides a drastic change in both flutter dynamic pres-
sure and the flutter mechanism.

Three time-domain aeroelastic models, starting from

separate NASTRAN normal modes analyses, were con-
structed. Two were direct "coupled" and "decou-

pled" models and the third was an FM model. The
generalized aerodynamic force coefficient matrices in

each case were calculated at 14 reduced frequency val-

ues between 0 and 1.5. Minimum-State, physically

weighted rational function approximations of the un-
steady aerodynamics s were performed with 8 lag terms,

which yielded 8 aerodynamic augmenting states. The

physical weightings were performed at q = 1.5 psi.
Each model had two versions, one where the approx-

imation was constrained to match the real and imag-

inary parts of the aerodynamic data at k = 1.5, and

one with the real data matching constraint replaced by

[As] = 0 in Eq. (1), to avoid repetitive inversions of
[_/] in Eq. (2). All the models were constructed with

diagonal modal damping values of _ = 0.01.

The FM NASTRAN model was with the "decoupled"

pitch connection and with a fictitious pitch inertia of
3 lb-in-sec s, twice that of the tip ballast, loading the

wing end of the connection pitch spring. A set of 14
low frequency fictitious-mass modes, [¢I], was used to

generate the basic "coupled" model by solving for the
natural frequencies and eigenvectors of Eq. (14), with

lAMb] = 0 in our case, then transforming the data to
the "coupled" modal coordinates, Eqs. (15) and (16),

and then performing the aerodynamic approximation
and the model construction. A comparison between the

first seven natural frequencies of the "coupled" model
obtained directly from NASTRAN, those calculated
from the 14 fictitious-mass modes and those calculated

by direct coupling from 14 "decoupled" modes without

fictitious masses is given in Table 1. It is clear that the
FM model produces accurate frequencies. The flutter-

critical ballast pitch frequency obtained from the "de-

coupled" model without fictitious mass is 18% higher
than the correct one, which indicates that the direct

coupling approach is not adequate in our case.

The basic FM aeroelastic model was used for var-

ious stability and time-response analyses with differ-

ent pitch connection stiffnesses between "coupled" and

"decoupled" conditions. The transition from the basic

"coupled" case to another case is performed by simply

introducing the appropriate stiffness and damping cou-

pling terms. A comparison between flutter conditions
calculated by the frequency domain p- k method and
those obtained from root-locus analyses of the state-

space models is given in Table 2. The largest devia-

tion of state-space from p - k results is in the flutter

dynamic pressure of the "decoupled" FM model with

[As] = 0. The contributors to this error are the large
difference between the flutter dynamic pressure (3.102

psi) and the physical weighting dynamic pressure (1.5

psi), the large deviation from the weighting "coupled"

pitch spring, and the [As] = 0 constraint. The error
however is still below 5%.

A root-loci plot of the low-frequency eigenvalues of

the system matrix [A] where the pitch connection stiff-
ness is varied in small increments from "coupled" to

"decoupled" values at q = 2 psi is shown in Fig. 2.
This was accomplished by varying [A] from "coupled"

to "decoupled" linearly. The linear variations are valid

because [A_/] in Eqs. (2) and (8) is not affected by

the changes. It should be mentioned that with linear
variations, while the extreme points modal dampings

produced by the application of Eq. (17) are effectively

diagonal, those at intermediate points are not. How-

ever, without having specific knowledge on the damping
behavior of the decoupling mechanism at intermediate

points, the linear change is as good as other possible
variations. The variation of the maximal real part of

the eigenvalues of Fig. 2 is shown in Fig. 3. It can
be observed that the system stability is very sensitive
to the connection spring, especially when it is close to
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